
Book of Abstracts

GMSPD 25

Geometric Mechanics,

Structure Preserving Discretizations, and

Discrete Differential Geometry
on General Fibered Manifolds

Department of Mathematics and Physics, SUNY Polytechnic Institute, Utica, NY

Cayan Library, Mele Room/L202

Geometric Mechanics,

Structure Preserving Discretizations, and

Discrete Differential Geometry
on General Fibered Manifolds

Department of Mathematics and Physics, SUNY Polytechnic Institute, Utica, NY

Cayan Library, Mele Room/L202

Monday July 21

Welcome by the Organizers

Wednesday, July 23

Welcome by the Provost Dr. Andrew Russell

9 am Andrea Dziubek SUNY Polytechnic Institute, NY

A gentle introduction to vector valued differential
forms in geometric mechanics and their structure
preserving discretizations

Kaibo Hu University of Edinburgh and Maxwell Institute, UK

Finite element form valued forms (FEEC, online)
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A gentle introduction to vector valued differential forms in

geometric mechanics and their structure preserving

discretizations

Andrea Dziubek

SUNY Polytechnic Institute, Utica, NY

Structure preserving discretizations (SPD) for partial differential equations have been
around for about two decades now. They have proven to accurately, efficiently and stable
solve e.g. the Maxwell equations on nontrivial domains, the Navier-Stokes equation on
curved surfaces, the equations for thin elastic shells, and the Cosserat media equations.

Key in the development of geometric mechanics (GM) was the realization that the de-
scription of generalized (Cosserat) materials and the theory of dislocations are related.
Micropolar (Cosserat) material is described as a field of infinitesimal rigid bodies whose
orientations are determined by a field of orthonormal frames, in other words, as a prin-
cipal fiber bundle. And dislocation theory corresponds to an incompatible Cosserat
continuum.

There has been limited interaction between the GM communities and the various SPD
communities. Some work has been done to extend these discretizations to general fibered
manifolds. However, this requires advanced concepts from modern differential geometry
– beyond tensor calculus on Riemannian manifolds which has long been used to describe
classical mechanics.

This talk will give an introduction to both GM and SPD, with special focus on general
fibered manifolds from different perspectives.



On compatibility conditions in Riemann-Cartan geometry

Michael Karow

TU Berlin, Germany

We review basic compatibility conditions as the Poincare Lemma and the Frobenius

Theorem. Their relationship to the curvature and the torsion tensor are discussed using

a non-standard notation.



Reviewing Ehresmannian Geometry in Electromagnetism

and Elasticity

Nicholas Andrzejkiewicz

SUNY Polytechnic Institute, Utica, NY

Ehresmannian geometry generalizes the notions of connection and curvature to struc-
ture groups G other than SO(3), SO(n), or SO(1,3). It includes Riemannian geometry
as a subset by ignoring metric information and starting with the Levi-Civita connection.

This framework includes examples such as electromagnetism G=U(1), symplectic ge-
ometry/quantization G= U(1), elasticity G=SO(3), the classical strong force G=SU(3),
and the classical weak force G=SU(2). Even in the context of Riemannian geome-
try it more clearly contains and explains the complicated transformation laws of the
gamma/Christoffel symbols in Riemannian geometry and relativity.

Ehresmannian geometry is developed in terms of Lie-algebra-valued differential forms,
not on space or spacetime, but on the G-principal bundles over space or spacetime,
generalizing the notions of frames and coordinates. The choice involved in taking a cross
section of this higher dimensional space is why Christoffel symbols transform as they do.
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FEM meets Discrete Differential Geometry: Extrinsic &

intrinsic curvature approximation

Jay Gopalakrishnan1, Michael Neunteufel1, Joachim Schöberl2, Max Wardetzky3

1 Portland State University
2 TU Wien

3 University of Göttingen

The curvature of surfaces and Riemannian manifolds is essential in several fields such
as nonlinear shell analysis, general relativity, and geometric flows. Discrete differential
geometry (DDG) seeks to approximate curvature quantities on discretized surfaces and
manifolds. Incorporating DDG into a finite element method (FEM) framework provides
robust tools for analysis and development of algorithms. Distributional finite elements
are crucial here. However, due to their weak regularity, (nonlinear) differential operators
have to be interpreted in a sense of distributions.

In this talk, we present how the DDG algorithms of dihedral angles for extrinsic cur-
vature and angle defects for intrinsic curvature approximation can be incorporated into
FEM. To this end, we approximate the surface using Lagrange finite elements and the
Riemannian metric tensor by symmetric, tangential-tangential continuous Regge ele-
ments [1, 2]. We discuss convergence results by utilizing an integral representation of
the distributional curvatures involving covariant differential operators [3]. We present
the application of distributional extrinsic curvature in nonlinear shell models. Numerical
examples are demonstrated with the finite element library NGSolve (www.ngsolve.org)
and NGSDiffGeo, an add-on package for differential geometry support.
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Defining Curvature for Regge Metrics

Jack McKee1, Evan Gawlik2

1 University of Hawai’i
2 Santa Clara University

Various weak forms of the Riemann curvature tensor have been proposed and evalu-

ated, especially for the special class of metrics called Regge metrics, which are piecewise

smooth and have tangential-tangential continuity. Usually these are inspired by mimicry

of certain properties of the smooth curvature tensor. I will present a new definition of

the curvature functional for Regge metrics, inspired by direct weakening of the Cartan

structure equations. By picking a special type of orthonormal frame, it is possible to

derive an equation for this functional that is equivalent to existing equations for the

distributional Riemann curvature, but has the attractive property of being expressible

using only integration of differential forms on manifolds.



Finite element form-valued forms

Kaibo Hu1, Ting Lin2

1 The Maxwell Institute for Mathematical Sciences & School of Mathematics, the
University of Edinburgh

2 School of Mathematics, Peking University

Classical őnite element methods, such as those by Lagrange, Nédélec, RaviartśThomas,
and Brezzi-Douglas-Marini, őt within de Rham complexes and can be interpreted as dis-
crete differential forms. These őnite element differential forms encode discrete topology
and have become standard practice for solving vector-valued problems. Their structures
also őnd broad applications in discrete topology, including topological data analysis and
the Hodge Laplacian on graphs.

In this work, we focus on tensors with applications in continuum mechanics, differ-
ential geometry, and general relativity. First, we investigate the algebraic and differen-
tial structures of tensor őelds. We show that tensor őelds with natural symmetries őt
within Bernstein-Gelfand-Gelfand (BGG) complexes and twisted de Rham complexes,
and we discuss the correspondence between these complexes, generalized continua, and
Riemann-Cartan geometry. Second, we construct őnite elements for form-valued forms
(double forms). Special cases include classical őnite element differential forms, distri-
butional őnite elements, Christiansen’s őnite element interpretation for Regge calculus
in quantum and numerical gravity (discrete metric and curvature), the TDNNS/HHJ
element for elasticity, the MCS element for Stokes equations, and various new spaces.

The talk is based on several collaborative works [1]-[4].
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Double forms: Decomposition and discretization

Yakov Berchenko-Kogan1, Evan Gawlik2, Anil Hirani3

1 Florida Institute of Technology
2 Santa Clara University

3 University of Illinois Urbana-Champaign

Tensors with symmetries arise in a variety of situations that are modeled by partial

differential equations. Of particular prevalence are (p+ q)-tensors that alternate in their

first p first arguments and alternate in their last q arguments. These tensors are called

double forms or (p, q)-forms.

This talk will discuss the space Λp,q of (p, q)-forms, its algebraic structure, and its

discretization with finite elements. The talk will expand upon some of the content pre-

sented by Yakov Berchenko-Kogan and will include some joint work with Anil Hirani.

It will highlight two important algebraic tools: a canonical decomposition of Λp,q, and

a natural map s from Λp,q to Λp+1,q−1 that antisymmetrizes the first p + 1 arguments.

I will discuss a few ways of deriving the decomposition, its interplay with the map s,

and its role in the construction of finite element spaces for Λp,q. I will also discuss some

algebraic aspects of the map s, including its behavior under composition and inversion.



New estimates for potential operators in vector calculus and

exterior calculus

Theophile Chaumont-Frelet1, Martin Werner Licht2, Martin Vohralik3
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We discuss Poincare–Friedrichs inequalities in the context of vector calculus and ex-

terior calculus. This includes the Poincare inequality for the gradient operator and its

generalizations for the curl operator and the exterior derivative. Estimating the optimal

constants in these inequalities reduces to estimating operator norms of the associated

potential operators. We present several special cases and obtain upper bounds for con-

vex Lipschitz domains using results by Guerini and Savo, along with new estimates for

the regularized Poincare and Bogovskii operators.

More generally, we examine Poincare–Friedrichs constants over local finite element

patches within triangulated domains, using the notion of shellability from the theory of

polytopal complexes. Finally, we extend these results to general triangulated domains,

deriving reliable and computable bounds for the Poincare–Friedrichs constants of differ-

ential operators. Diagram chasing within a Cech–de Rham complex reduces this to a

merely finite-dimensional problem that is easily assembled from the geometric setting.

Numerical experiments support the theoretical results. Part of this work is joint with

Theophile Chaumont-Frelet and Martin Vohralik.



Tutorial Introduction to Exterior Covariant Derivatives of
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Exterior covariant derivatives of double forms are families of operators dj,k
∇

: Ωj,k(M) →

Ωj+1,k(M). These are a special case of the covariant exterior derivatives dj
∇E

that act on

the spaces Ωj(M ;E) of vector bundle valued forms for a vector bundle E over M with
connection ∇

E . The goal of the tutorial is to familiarize the audience with the algebraic
rules that dj,k

∇
and d

j

∇E
satisfy without worrying about analysis stuff or technical nonsense

about vector bundles. This will be done using several small example computations done
entirely without coordinates. We will see how d∇◦d∇ gives curvature, how d∇ simplifies in
R
n, how torsion shows up when d∇ interacts with the Bianchi sums (diagonal operators of

BGG construction), and what happens to the Hessian sequence in this general setting [1].

References

[1] Evan Gawlik and Anil N. Hirani, Sequences from sequences, sans coordinates, In
preparation.



A structure-preserving Lie-Poisson scheme for parabolically

regularized compressible flow
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It is well known that the compressible Euler equations can be written in Lie-Poisson
Hamiltonian form in terms of mass density, momentum density and (thermodynamic)
entropy density. Doing so exposes several fundamental features, including conservation
laws such as total mass and total energy. Using structure-preserving numerics, these
properties can be preserved at the discrete level. In this work, we have chosen to use a
discrete exterior calculus (DEC) scheme in space and a discrete gradient (DG) scheme
in time. Specifically, we use a structure-preserving, high-resolution, oscillation-limiting,
bounds-preserving (SPHROL-BP) discretization of the Lie derivative. This provides
excellent numerical solutions for the case of smooth flows, and facilitates preservation of
the invariant domain for the Euler equations.

However, in the presence of solution discontinuities, the Lie-Poisson formulation is
physically incorrect since it implies conservation of (thermodynamic) entropy across
shocks. This is dealt with by introducing a nonlinear, solution and grid dependent
parabolic regularization that parameterizes the entropy generation across shocks, and
ensures positivity of density and a maximum principle for entropy. This regularization
can be written as a type of metriplectic system that conserves total energy and gen-
erates (thermodynamic) entropy, which generalizes Hamiltonian dynamics and can be
discretized using the same type of structure-preserving DEC-DG scheme. Combining
these elements, we obtain a fully discrete scheme with exact (local) conservation of mass
and energy, generation of thermodynamic entropy across shocks, and invariant-domain
preservation.

Results will be demonstrated for a variety of 1D flow problems, including various Rie-
mann problems. If time permits, there will be discussion of extending these ideas to the
case of charged fluids such as MHD and Euler-Maxwell, where the underlying Lie-Poisson
Hamiltonian formulation facilitates the design of schemes with charge conservation and
other involution constraints.


