
State University of New York Polytechnic Institute

College of Arts and Sciences

Vibration of a Framework of

Springs and Masses

Submitted by:

Gregory Georgiades

Mechanical Engineering Student

David Petrushenko

Mechanical Engineering Student

Submitted to:

Project Advisor

Dr. Andrea Dziubek

Assistant Professor

Department of Mathematics

A di↵erential equations project submitted in partial fulfillment of the requirements for the

spring 2017 session of Numerical Di↵erential Equations (MAT460)

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Contents

1 Project Definition 3

2 Physical Problem 5

2.1 Model Assumptions . 6
2.2 Formulating Physical E↵ects . 7

3 Numerical Methods 8

3.1 Euler Explicit . 8
3.2 Euler Symplectic . 8
3.3 Störmer-Verlet . 9
3.4 4th Order Runge-Kutta . 9
3.5 Applying the numerical methods . 10

4 Algorithm and Programming 10

5 Parameter Analysis and Discussion of Results 11

5.1 Symmetry . 11
5.2 Energy Under Symmetric Initial Conditions . 12
5.3 Time Step Considerations . 14
5.4 High Strength Frameworks . 15
5.5 High Mass . 15

6 Applications 15

6.1 Floor Truss . 15
6.2 Crane . 16

7 Summary of the Project 16

Appendices 19

A Course Evaluation 19

A.1 Gregory Georgiades . 19
A.2 David Petrushenko . 19

B Python Simulation Code 20

1

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

List of Figures

1 A three-dimensional framework observed on a tower crane. Image retrieved from
Google. 3

2 An example of a simple roof truss. Image retrieved from Google. 4
3 General planar framework configuration. Image adapted from Project Guide. 5
4 Free-body diagram of node two. 7
5 General planar framework configuration. 10
6 Symmetric Motion Example . 11
7 Unsymmetric Motion Example . 12
8 Euler Symplectic Simulation with Initial Loading. 13
9 Runge-Kutta 4th Order Explicit Simulation with Initial Loading. 13
10 Euler Symplectic Simulation with Initial Displacement. 14
11 Runge-Kutta 4th Order Explicit Simulation with Initial Displacement. 14
12 Floor Truss Initial Configuration . 16
15 Crane Initial Configuration . 16
13 Steps during the Floor Truss Framework Simulation 17
14 Energy Plot for the Floor Truss Framework Simulation 17
16 Steps during the Crane Framework Simulation . 18
17 Energy Plot for the Crane Framework Simulation . 18

List of Tables

1 Variable nomenclature for framework analysis. 5

Nomenclature

Refer to Table 1 for most of the nomenclature used in this project. Certain variable definitions are
not reproduced here to avoid unnecessary repetition and potential variable definition conflicts.

a = Acceleration

v = Velocity

F, f = Force

t,�t = Time

G = Acceleration due to Gravity

w = Energy

C = Generalized Initial Condition

2

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

1 Project Definition

Physical systems encountered in many disciplines of engineering, mathematics, and science are
the basis of inquiry and motivation for study. It is often the interest of engineers to develop mod-
els in order to characterize their behavior based on a set of initial conditions. Once the behavior
of a simple system is well understood, a similar approach may be utilized to develop a model for
a more complex system, or one that better captures the behavior of initially simplified one. By
varying the parameters, it is possible to study separate components in order to quantify their ef-
fects to the overall estimation of system behavior.

Applying the theories of mathematics and science provides a basis for developing a rigorous
model. It is important to note the various contributions provided by a variety of factors present
in a physical system. Modeling these behaviors is often dependent on a series of underlying math-
ematical and physical principles governing the evolution of the system. Prior to modeling, it is

Figure 1: A three-dimensional framework observed on a
tower crane. Image retrieved from Google.

often the case that each system is observed
to gain a preliminary understanding of the
characteristics that should be captured. Based
on these details, a model may be developed
in order to study a particular component or
components of a system. After applying the
relevant equations, models are conceived in
the order of complexity that interests the in-
vestigator studying the system.

It is common practice to begin with a
complex model and introduce assumptions
to narrow the scope of study. While keeping
a model at its original state is possible, often
times it becomes di�cult to solve analytically
or may be computationally expensive to per-
form the analysis using sophisticated compu-
tational logarithms. In some cases, systems
may be simplified with the intent of producing
a closed form analytical solution. An example
is the commonly used method of approximat-
ing nonlinear systems as linear by substituting
coe�cients for nonlinear terms or expanding
them using series. Even though these methods
may partially skew the system characteristics,
they provide good starting points for analysis to the system dynamics. Alternatively, di↵erent
methods of evaluation may be exercised to solve the system and compared to determine which
yielded better results. Then, the di↵erences between solutions may be quantified to determine
the errors associated with the particular method. It is typical to analyze a system and compare
to experimental results using the methods available in the literature. After formulating the mod-
eling concepts in a generalized manner, it is typical to add complexity of di↵erent conditions to
the system in order to study the incremental di↵erences that the model outputs based on the
varied inputs.

3

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

A common system encountered in mechanical and civil engineering is one made of two-force
members that create a unified structure of members that is referred to a framework or truss. Fig-
ures 1 and 2 show examples of a three-dimensional and two-dimensional framework structures
commonly encountered by engineers. Developing a theoretical model to formulate the predictive
behavior of these physical systems provides a means of testing them without having a physical
model. In the case

Figure 2: An example of a simple roof truss. Image retrieved from Google.

of designing cranes, it would become very expensive and impractical to study the behavior with-
out developing a theoretical model. The theoretical contributions of modeling systems using
simulations available on computer programs show the true potential of combining physical and
mathematical concepts. They allow for a viable solution to study engineering systems and pro-
vide it for a very low cost as compared to building and testing a system physically.

Trusses and frameworks make a particularly interesting topic to study since they provide an
instance of combining theoretical knowledge to applications in industry. These structures are
built with minimal material and designed to provide large load to mass ratios which is commonly
desired in structural engineering applications when building roofs, floors, highways, and heavy
machinery such as the tower crane shown in Fig. 1. The primary interest of our study does not
lie in determining the static boundary positions, but rather in the evolution of the system mov-
ing towards its final state after the application of some initial conditions. Members of the frame-
work are simplified to be considered as springs and masses connecting to make a general struc-
ture able to be defined in any physical shape. Also, it is out intent to quantify the di↵erences in
the numerical methods used by applying the conservation of energy principle to quantify some
of the numerical errors created while solving the di↵erential equations system. We will explore
various methods such as Euler Explicit, Euler Symplectic, Störmer-Verlet, and 4th Order Runge-
Kutta to show the di↵erences in their performance as integrators.

4

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

2 Physical Problem

The inherent characteristics of a spring-mass framework allow multiple methods to be used in
estimating the system geometry as it evolves. Due to its classical connection to mechanical sys-
tems, the Newtonian approach was selected as the primary method for propagating changes in
the framework. We begin our analysis by introducing the truss framework shown in Fig. 3 and
develop a method of analysis. Then, this method is generalized to accommodate any general pla-
nar framework system which can be modeled as a spring-mass framework.

Figure 3: General planar framework configuration. Image adapted from Project Guide.

As a prelude to the analysis, we begin by defining the pertinent variables in Table 1. The
variables in the table are primarily defined with respect to the nodes since the method of anal-
ysis follows a similar approach.

Notation General Description

n 2 N Number of nodes in the framework
mi > 0 Mass at node ni

sik 2 N Spring connecting node ni to node nk

xi 2 R2 Initial position of rest for node ni

ui 2 R Time dependent displacement of node
Fi 2 R2 Force applied to node ni

Di 2 R2 Initial displacement applied to node ni

kik � 0 Sti↵ness of spring connecting node ni to node nk

lik � 0 Length of spring connecting node ni to node nk

Table 1: Variable nomenclature for framework analysis.

In the general case, each node is connected to at least one spring, but any spring may be
specified to have zero mass. For this reason, masses are an optional attribute to a particular node
but the position of the nodes must be specified for the analysis of the framework.

5

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

2.1 Model Assumptions

A few assumptions have been considered in developing the framework model and the motivation
for each is briefly described here. In general, a number of considerations were made to narrow
the scope of the project but still provide accurate representations to capture the prominent be-
haviors of the system.

Following the applied character of this study, a few constraints were added to limit the input
parameters for the framework. In theory, it is possible to construct a system without any con-
strained nodes, however since this type of system is physically inconceivable on earth, it will not
be considered in the set of analysis cases. Along the same argument, we require that each system
has at least one spring and one mass defined. In summary, the input parameters for the system
must model a physical system having at least one defined node, spring, and mass. If we consider
these inputs, they model a system commonly encountered when studying dynamical systems. A
common example is a simple two degree of freedom harmonic oscillator, otherwise known as a
simple pendulum, having a spring connecting a mass to a rotating fulcrum (node). It is interest-
ing to note that this set of inputs has a direct connection to simple systems studied in introduc-
tory mechanics courses.

As the two main components of the system, the following considerations have been defined
for the springs and masses of the framework. The springs in the system are defined in such a
way that they connect exactly two nodes and half of the spring’s mass is transferred to either
node. This is a reasonable assumption since most members in frameworks have linear densities in
their force direction. Further, springs are free to rotate about either node that they are attached
therefore eliminating any generation of torques within the system. We also allow that springs can
act in both tension and compression and they are assumed to exhibit linear sti↵ness for their full
length, experience no fatigue, and provide 100 percent elasticity. We also assume that the masses
to which springs connect do not alter the dynamics of the system significantly, in particular the
sti↵ness, since the model follows a lumped mass approach.

In addition to the previously defined assumptions, a few others have been added to simplify
the analysis of the system which are more theoretical in character. Although this is not physi-
cally possible, we assume that the springs in the system may experience infinite tension and com-
pression and are physically indestructible. This assumption was retained to simplify and speed
up computations and as a way of comparing the various methods of analysis. If constraints for
compressed and extended lengths were considered, numeric methods that quickly break down
would be limited by these constraints and their overall inaccuracy would become masked by such
bounds. Futher, most physical springs do not exhibit linear sti↵ness especially when stretched or
compressed passed their intended service lengths, however it should be noted that most physical
systems maintain their linear range of sti↵ness unless they are collapsing to overload. Lastly, we
neglect the rotational kinetic energy generated by the small rotations of the springs and masses
as they oscillate. The primary motivation for this assumption is that most physical systems do
not oscillate significantly about their equilibrium point under stable operating conditions.

In summary, the primary motivation for defining the assumptions is to narrow the scope of
study to a system with physical characteristics. Given some initial inputs, the system is expected
to behave close to that if a physical system were available for the said conditions.

6

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

2.2 Formulating Physical E↵ects

Considering the assumptions stated above, a general approach of analysis may be formulated us-
ing Newtonian mechanics. To begin the analysis, consider node X2 from Fig. 3. The correspond-
ing free body diagram (FBD) of the node is shown in Fig. 4.

Figure 4: Free-body diagram of node two.

The vector form of Newton’s second law of motion is applied to the node as follows,

X
~

F2 = m2~a2 (1)

where
P

~

F2 is the sum of all of the external loads, m2 is the mass assigned to the node, and ~a2

is the resulting acceleration of the node. If the e↵ects of gravity, ~

G, are neglected, the remain-
ing forces acting on the node are external loads and forces caused by the springs attached to the
node. For this particular node, four springs are attached exerting forces ~

F1(~x), ~

F3(~x), ~

F7(~x), and
~

F8(~x), where the subscripts indicate the node they are attached to on the opposite end. Each
spring in the framework is limited to connecting exactly two nodes. Following Newton’s Law, it
exerts an equal amount force on either node it connects to, in the direction if its prominent axis.
The spring’s e↵ective force is defined in Eq. 2 which depends on the position and displacement of
the node along with the spring’s sti↵ness.

fik(ui, uk) = sik

✓
1� `ik

||(xk + uk)� (xi � ui)||2

◆
((xk + uk)� (xi + ui)) . (2)

The definitions of each variable in Eq. 2 have previously been defined in Table 1 above. In addi-
tion to the spring applied spring forces, initial conditions of applied force must also be considered
in the general EOM for each node. Because the motion of the nodes are dependent on the inte-
gration time step, the variables in Eq. 2 can be more explicitly written with the time dependence
shown. Equations 1 and 2 may be combined with the generalized initial conditions of continu-
ously applied force or displacement to give:

7

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

miüi(t) =
nX

k=1

fik(ui(t), uk(t)) + Ci (3)

where Ci is a term generalizing the initial displacement applied to the node, Di, or the persistent
force applied to the node, Fi. Both variables have been previously defined in Table 1 above.

Due to the nature of the system, it is possible to incorporate an energy calculation as a bench-
mark to compare various integrators. The energy of the framework may be generalized by adding
the energy of each individual mass concentrated at the node. The following equation summarizes
this approach:

w(t) =
nX

i=1

mi

2
||u̇i(t)||22 +

nX

i=1

X

k=i+1

sik

2
(||(xk + uk(t))� (xi + ui(t))||2 � `ij)

2 (4)

where w(t) is the time dependent energy associated with each node of the framework. This en-
ergy calculation does not consider gravitational potential energy, only spring potential energy
and kinetic energy. Note that Eqs. 2 - 4 have been adapted from the Project Guide provided at
the beginning of this project.

3 Numerical Methods

Once the equations of motion are finalized for our framework, simulation is the next step. Our
model allows for the calculations of the net acceleration of each node. The numerical methods
employed must be able to step up through the velocity then to the position of each node. Several
methods were used including: Euler Explicit, Euler Symplectic, Störmer-Verlet Symplectic, and
the classical 4th Order Runge-Kutta methods. Each one is described in a section below. All of
these methods are derived to solve second order di↵erential equations representing equations of
motion for dynamical systems.

3.1 Euler Explicit

The equations representing the Euler Explicit Method are

u

j+1 = u

j +�t v

j
, v

j+1 = v

j +�t a(uj , vj , tj). (5)

Comparing these to the generalized kinematics equations for particles, the position values are
calculated using the old velocities with no considerations to the old accelerations. The velocity
equation looks just like the one for particle kinematics under constant acceleration. Using a con-
stant acceleration is a reasonable method when stepping through a simulation at very small time
steps.

Euler explicit is known to be the least useful numerical solving method because it quickly di-
verges from what would be considered the actual solution. This may be because the position cal-
culation acts as if the acceleration is zero.

3.2 Euler Symplectic

The equations representing the Euler Symplectic Method are

8

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

v

j+1 = v

j +�t a(uj , vj , tj), u

j+1 = u

j +�t v

j+1
. (6)

Euler symplectic looks very similar to Euler explicit, but it di↵ers in that the new positions
always depend on the newly calculated velocities. This causes the symplectic nature of the method,
or the ability to preserve the energy of the system. It is derived to be a solution to Hamilton’s
Equations, which are inherently energy preserving.

Euler Symplectic still depends on smaller time steps to maintain accuracy, but it will not di-
verge from the expected solution of a system to the same degree as the explicit version does.

3.3 Störmer-Verlet

The equations representing the Störmer-Verlet Method are

u

j+1 = u

j +�t v

j +
�t

2

2
a(uj , vj , tj), v

j+1 = v

j +�t

a(uj , vj , tj) + a(uj+1
, v

j+1
, tj+1)

2
. (7)

This method takes care of the issue that the Euler methods had; the acceleration is consid-
ered when the positions are calculated. The new velocity is calculated using the average of the
current and next acceleration accounting for the semi-implicit or symplectic nature of the method.
Our system does not depend on velocity so this method is purely explicit. The symplectic nature
of the method in our system is maintained because all of the energy is due to conservative spring
forces and kinetic energy.

In terms of the numerical order of the method, the Störmer-Verlet is a second order method,
taking advantage of the central di↵erence derivative method. Both Euler methods described above
are first order. Numerical error is significantly reduced as the order of the method is increased.
The trade-o↵ to higher order methods is the required computation ability is greater.

3.4 4th Order Runge-Kutta

The equations representing the 4th Order Runge-Kutta method are

û1 = u

j
, v̂1 = v

j
, â1 = a(uj , vj , tj)

û2 = u

j +
�t

2
v̂1, v̂2 = v

j +
�t

2
â1, â2 = a(û2, v̂2, tj +

�t

2
)

û3 = u

j +
�t

2
v̂2, v̂3 = v

j +
�t

2
â2, â3 = a(û3, v̂3, tj +

�t

2
)

û4 = u

j +�t v̂2, v̂4 = v

j +�t â2, â4 = a(û4, v̂4, tj+1)

u

j+1 = u

j +
�t

6
(v̂1 + 2v̂2 + 2v̂3 + v̂4), v

j+1 = v

j +
�t

6
(â1 + 2â2 + 2â3 + â4)

(8)

This method, explicit in nature, takes advantage of multiple intermediate calculations be-
tween two time steps. Each sub-iteration essentially calculates the midpoint position, velocity,
and accelerations and it does it 4 times to find more accurate results. In the final calculations,
the the average of all of the intermediate steps is take as the next iteration values.

As the name suggests, this is a 4th order method which means the numerical accuracy of the
method is much greater than than the previous methods. It is not symplectic so it does not pre-
serve energy, but as it will estimate the exact solution accurately for a longer period of time.

9

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

3.5 Applying the numerical methods

In the case of our model and the way they were programmed, the above methods were essentially
input identically as they are read. All that changes is which one to use. The tricky part arises
when any intermediate accelerations must be calculated because it must be done in a certain
manner to accommodate the limitless frameworks possible. Intermediate acceleration calculations
tax the program significantly so they should be avoided in complex frameworks unless substantial
computation times are acceptable.

4 Algorithm and Programming

Figure 5 summarizes the basic operation of the program. The first step is to develop a frame de-
sign and transfer the information into Cartesian coordinate pairs into the program, specifying
which nodes are grounded and which are free to move.

Figure 5: General planar framework configuration.

Then the user needs to indicate which nodes are connected with springs, identifying spring
sti↵ness and spring mass. The program proceeds to internally build a framework which is de-
fined by the input parameters of initial node locations and springs connecting the nodes. If initial
conditions are applied to the framework, it will provide a simulation with a changing geometry,
otherwise, the frame will remain stationary. There are two ways to disturb the initially static
system; with the application of a persistent load or an initial displacement. Each node is pro-
grammed to react to the initial conditions, a↵ecting the neighboring nodes as time evolves. The
user input also requires a time step value to be specified.

10

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

After the initial definition stage, the program proceeds sum the forces at each node, with the
general method indicated in the diagram, and computes the next iteration using one of the speci-
fied integrators. The energy associated with each node is updated based on the current condition
as well as the position. This iterative process of computing the node acceleration, position, and
energy continues for the duration of the specified time interval. When the computational work is
completed, the program displays an animation of the framework as it changes geometry.

The program algorithm works by updating the node positions and computing the reactions
after the updated positions are saved. Essentially, the code moves the nodes due to the respec-
tive forces acting on them. This method was chosen over a di↵erent one where it was proposed
to control the spring positions rather than the nodes. The current algorithm is very robust in na-
ture allowing the user to create various planar configurations beyond the initial intentions.

5 Parameter Analysis and Discussion of Results

This section describes the conclusions about the model in which the program and various simula-
tions lead to.

5.1 Symmetry

Due to the nature of the model, symmetry preserves motion. Building a symmetric framework
with all mass and spring constants the same and then applying initial conditions in a symmet-
ric manner should cause the system to move symmetrically. This is because all spring forces and
load forces balance in the system. Therefore, testing for symmetrical motion is one way to verify
the accuracy of the simulation. Figures 6 and 7 show examples of symmetrical and unsymmetri-
cal motion.

Figure 6: Symmetric Motion Example

11

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Figure 7: Unsymmetric Motion Example

5.2 Energy Under Symmetric Initial Conditions

Another method to test the accuracy of the simulations is to input a simple framework and check
the energy of the system under symmetrical initial conditions.

In the case of initial loading, the energy of the system oscillates between zero energy and a
maximum energy. This is because at the instant when the load is applied, the energy of the sys-
tem is zero. The loading causes a force imbalance which initiates motion in the system. Thus,
energy is added until the momentum of the system changes direction and the system returns to
its starting position, while decreasing in energy. This repeats forever due to the lack of damping
in the model. The initial load is constantly applied so when the springs and nodes settle down,
the load force can once again act in full power. Figures 8 and 9 shows two di↵erent numerical
solvers simulating the same system given an initial, symmetric loading.1 Their corresponding en-
ergy plots are adjacent. It is clear looking at the energy plot that there is basically no di↵erence
between the two methods

In the case of initial displacement, energy is added because of the displacement and the to-
tal energy remains constant throughout the entire simulation. Adding initial displacement can
be compared to priming a slingshot and releasing it. The potential energy in the sling is quickly
converted to kinetic energy. In our model, there is nothing to take the energy back so the sys-
tem keeps the energy and oscillations occur forever. Unlike initial loading, the energy is passed
between kinetic and spring strain potential without any losses or gains. Initial loading is not
very sensitive to more accurate numerical solvers, but initial displacement is heavily dependent
on such accuracy. Figures 10 and 11 shows two di↵erent numerical solvers simulating the same
system given an initial, symmetric displacement. Their corresponding energy plots are adjacent.
The Runge-Kutta simulation shows small energy loss at the micro-unit level, while the Euler sim-

1Figures 8, 9, 10, and 11 each simulate 300 steps at a step size of 0.05 for a total of 6000 steps.

12

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

ulation energy fluctuated above the mili-unit level.

Figure 8: Euler Symplectic Simulation with Initial Loading.

Figure 9: Runge-Kutta 4th Order Explicit Simulation with Initial Loading.

13

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Figure 10: Euler Symplectic Simulation with Initial Displacement.

Figure 11: Runge-Kutta 4th Order Explicit Simulation with Initial Displacement.

5.3 Time Step Considerations

Changing the step size of the numerical solver improves the accuracy of the simulation, regardless
of what method is employed. The trade-o↵ is the large increase in calculation time. In the case
of our system, the improved accuracy is helpful, but it is not necessary so long as the symmetry
of motion is maintained in such configurations that should be symmetric. Also, as show in the
previous figures, initial loading is not as sensitive to the numerical accuracy of the simulations

14

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

As our project and program is designed to be inclusive of any framework system, more com-
plex systems can be simulated. Each free node in the framework is essentially a system of 2 dif-
ferential equations. One DE to solve the velocity of the node, the other to solve the position of
the node. Therefore, the total number of equations that need to be solved every step is two times
the number of free nodes. For a system with 10 free nodes, the program must simulate 20 di↵er-
ential equations every time step. In higher order numerical methods, the acceleration must be
re-calculated multiple times at intermediate time steps. This places a massive load on the com-
putation time in order to improve the accuracy of the simulation. Distinguishing when a partic-
ular method is the most useful is important when simulating far more complex frameworks. By
using a smaller time step, more times must be simulated in order to produce the same simulation
time. Simulating 100 seconds with a time step of 0.05 seconds is faster than simulating 100 sec-
onds with a time step of 0.01 seconds. Therefore, the quality of the simulation must be weighed
with the computation time also. For most of the frameworks tested, a time step of 0.05 or 0.01
seconds was su�cient to produce accurate simulations depending on the strengths desired.

5.4 High Strength Frameworks

In the case when substantial spring strength is desired, the spring constants are set to high val-
ues. This causes the spring force to be large. This sometimes serves to create quasi-rigid springs.
In certain applications, the high spring forces makes it near impossible for the spring length to
change from its undeformed length. This broadens the scope of application of the project to par-
ticle pendulums and other rigid-length dynamic systems. A side e↵ect of rigidity is the depen-
dence on smaller time steps. A high force has more potential to cause a node to escape so the
smaller time step will catch it before any harm is done to the simulation. Essentially this means
smaller time steps are required to simulate stronger frameworks.

5.5 High Mass

Changing the mass of the springs which correlates to increasing the mass of the nodes causes the
net acceleration of the nodes to be smaller. Over the duration of the simulation, this causes ev-
erything to just happen slower. There is not much change in the motion of the framework. This
could be because we are not considering rotational energy in our model.

6 Applications

After verifying the consistency and the appropriateness of the program, frameworks can be built
to simulate pseudo-realistic structures such as truss-works and even crane bodies. A few exam-
ples are described.

6.1 Floor Truss

A simple 2D floor truss was simulated. Figure 12 shows the initial position of the structure with
the locations of the applied distributed load along the top. The magnitude of each load ~

F is 0.25.
The spring constant for all of the springs is 200 and the masses are 1. These initial conditions
represent what a floor may experience when heavy objects are uniformly spread along it.

The simulation was run on the floor truss framework using a time step of 0.01 for a total of
10,000 iterations. The numerical method employed was the Störmer-Verlet method. Figure 13

15

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Figure 12: Floor Truss Initial Configuration

shows the framework motion over time. The end nodes of the framework were fixed in place. It
is interesting to see how the truss center bends downwards under the distributed load. Figure
14 shows the associated energy of the framework. Because of the symmetrical framework and
loading, the energy follows a consistent cyclic manner.

6.2 Crane

A simplified 2D projection of a crane was simulated. Figure 15 shows the initial position of the
structure with the locations of the applied loading. The magnitude of the applied loads ~

F1 and
~

F2 are 0.1 and 0.2, respectively. The spring constant for all of the springs is 200 and the masses
are 1. These initial conditions produce a simulation that demonstrates the scope of the program
while showing the periodicity aspect inherent in applying certain loadings.

Figure 15: Crane Initial Configuration

The simulation was run on the crane framework using a
time step of 0.01 for a total of 10,000 iterations. The numeri-
cal method employed was the Störmer-Verlet method. Figure
16 shows the framework motion over time. The base of the
framework was fixed in place. It is interesting to see how the
crane tower in the center is stretched and compressed as the
head of crane deforms. Figure 17 shows the associated en-
ergy of the framework. It shows oscillatory motion, but it is
not as nice as other cases due to the unsymmetric loading
and framework.

7 Summary of the Project

Overall, this project and course in general have been a great
learning experience. From the practical perspective, this
adds to the fundamental courses of our engineering course-
work. Understanding the limitations of analytical solutions in modeling applications is key
to studying numerical di↵erential equations. The practical use of the concepts learned in this
project extend far beyond the boundaries of this course. The immediate goal of the project was
to provide a robust program to accept various framework geometries and simulate their motion
with evolving time. Based on the initially stated assumptions, the goal of this project was satis-
fied. Multiple geometries have been simulated and presented in the class showing the robustness

16

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Figure 13: Steps during the Floor Truss Framework Simulation

Figure 14: Energy Plot for the Floor Truss Framework Simulation

of the programming algorithm.

Multiple issues were encountered throughout this project which extended our interest and
learning. The initial layout of program structure proved to be a big help. This served as a limi-
tation device since we were constrained by the given amount of time as well as a plan for devel-
opment. Other programming decisions such as the choice to use object-oriented programming
proved to be very useful for this particular situation. General programming debugging was also
an unavoidable recurring issue. In general, however, not many issues arose after the initial meet-
ings with project advisor Dr. Andrea Dziubek.

With the availability of time, our plan is to further generalize the existing program. We also
plan to create a GUI allowing the user to specify optional input parameters such as three-dimensional
geometry, the e↵ects of gravitational force and gravitational potential energy, and member damp-
ing models. Other program upgrades would focus on the limiting physical factors encountered in
physical systems. Such factors include the non-linearity of springs past a certain extension and
compression length and compensation of framework members’ inertia. Adding these parameters
to the program would give it a higher realistic factor as well as a broader applications footprint.
In addition, if we are successful in implementing these program upgrades, we will consider at-
tending the Student Project Showcase next year.

If this project was to be repeated with the current knowledge, it would be very helpful to be-

17

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Figure 16: Steps during the Crane Framework Simulation

Figure 17: Energy Plot for the Crane Framework Simulation

gin the project prior to the time we did. The extra time could have been utilized to ask addi-
tional questions and provide more clarification to issues that arose in project areas outside of the
numerical di↵erential equations knowledge.

18

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Appendices

A Course Evaluation

A.1 Gregory Georgiades

In Numerical Di↵erential Equations, I learned a lot about numerical methods and how they work,
what kinds of issues they have, and their usage in general. I also learned a lot more about nu-
merical computations. I was able to improve my python skills and I was ecstatic that I could
bring object orientated programming into the project. My strong programming skills made the
course a lot simpler than it could’ve been. Many other students were struggling the entire semester
to learn how to program at the level required. Programming ability is an absolute must in order
to enjoy this course. I believe the instructor taught at an appropriate level for a senior under-
graduate course. Working as a team with David was nice for bouncing ideas around and he was
an excellent partner on the project. It was di�cult for me to share coding assignments with him
because I wanted to do them all, but I managed to let some slide. I would say the availability
of the instructor was not very strong. Especially since she cancelled many of our pre-arranged
appointments. This did not hurt us because we were confident in our position, but it was still
very very sad. In the case of other groups, from what I saw, the meetings were never long enough
for them. I believe the two tutors were not good. They could not provide much help to other
students and would often waste students’ time when they were in dire need. The grading sys-
tem was completely flawed. Anyone who doesn’t know what a zip file is or how to handle them,
should not be grading a computer-based course where assignments were uploaded.

A.2 David Petrushenko

In general, I am happy about the knowledge and experience I gained through taking Numeri-
cal Di↵erential Equations. I learned the fundamentals of an open source programming language
while having constant support from my partner Greg and Dr. Dziubek. I am very thankful for
all of the discussions that we had together about homework and project related work. All has
contributed to the advancement in my knowledge of mathematical applications. In general, I
think the lectures were a little too theoretical. Since the course was primarily filled with mechan-
ical engineering students, I feel that the topics covered were lacking a direction of their direct
applications. Outside support was definitely very weak. It seems like the assigned tutors had lit-
tle interest in preparing and staying current with the coursework which showed with multiple
frustrated students. In general, it seemed better to spend a few hours searching online rather
than being confused by the tutors. In general, I feel that the presentations were a bit repetitive
and excessive. Most groups seemed to stretch their presentations and present the same content
multiple times just to fulfill the requirements. Alternatively, it may be beneficial to rotate group
presentations such that each group does not present one out of the three times. The grading sys-
tem may need an additional handout to avoid repetitive student questions and confusion of to-
tal points allowed for a particular exercise. To conclude, I would like to say that one of the best
things about the classroom experience was the positive student-professor interactions. Although
questions were not always answered, it did feel like the instructor was genuinely concerned about
student performance.

19

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

B Python Simulation Code

1 """
Numerical Differential Equations

3 Framework Project Code: Master Simulation , Plot , Animation , Saving
Instructor: Dr. Andrea Dziubek

5 Prepared by Gregory Georgiades and David Petrushenko
Last Updated: 5/1/2017

7 """

9 """
TODO:

11 - Spring Force is getting inf/nan somewhere? - based on step , spring constant!

13 # === If time/bored ===
- Interactive framework building

15 """

17 import time
start_time = time.process_time () # exectution time includes other

import times
19

import numpy as np
21 # import scipy.linalg as sci

from matplotlib import use , pyplot as plt , animation as ani , pylab
23 import subprocess

import os
25 import sys

sys.path.append(os.getcwd ()) # Fix path
27

np.set_printoptions(precision = 10, suppress = True , threshold = np.inf)
29 use(TkAgg)

plt.ion()
31 plt.close(all)

params = { legend.fontsize : x-large ,
33 figure.figsize : (16, 8),

axes.labelsize : 40 ,
35 axes.titlesize : 40 ,

xtick.labelsize : x-large ,
37 ytick.labelsize : 30

}
39 pylab.rcParams.update(params)

41

from famework_structures import *
43 from framework_solvers import solve

45

Build a framework , initial conditions deifined in build function
47 # nodes , springs = buildframework1 (10)

nodes , springs = buildBigPendulum (1200)
49 nodes , springs = buildSmallPendulum (20000) # step 0.01, k=20000 , runge: is good

pendulum!
nodes , springs = buildCrane (100) # ~640 is cap

51 # nodes , springs = buildFloorTruss (30)

53 # Simulate the framework
methods = { eulex , collatz , eulsym , runge , stormer }

20

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

55 times , energy = solve(nodes , springs , 0.01, 100, method = runge)

57 print("Simulation Runtime: %s seconds" % (time.process_time () - start_time)) #
print simulation execution time

59

==
61 # === Plotting and Animation =========================

==
63

65 # === Plot Bounds ====================================
figure out plot bounds based on intial positon and max displacements , then scale

a bit based on center
67

minx , miny , maxx , maxy = 0, 0, 0, 0
69

for n in nodes:
71 nx = [x[0] + n.x[0] for x in n.um]

ny = [x[1] + n.x[1] for x in n.um]
73 nmaxx = np.max(nx)

nminx = np.min(nx)
75 nmaxy = np.max(ny)

nminy = np.min(ny)
77

if nminx < minx:
79 minx = nminx

if nmaxx > maxx:
81 maxx = nmaxx

if nminy < miny:
83 miny = nminy

if nmaxy > maxy:
85 maxy = nmaxy

87 c = [(maxx - minx) / 2, (maxy - miny) / 2] # Geometric center
of bounding box

c = np.dot(0.5, c) # Upscaling Factor
89 bounds = [minx - c[0], maxx + c[0], miny - c[1], maxy + c[1]] # Scale each side

of the bounding box up by its distance to the center

91

=== Plotting function =============================
93 # Plot the system at any time t (integer ...)

95 def plotTime(t):

97 # Have to store the artists to return to animation func for using blit
artists = list()

99

=== Update Framework =============================
101

for s in springs:
103 artists.append(s.drawSpring(t))

105 for n in nodes:
artists.append(n.drawNode(t))

107

=== Update Energy ================================
109

21

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

en.set_data(times[:t], energy [:t])
111 # artists.append(en)

113 return artists

115 # Plotting and animation initiation function. Builds plot parameters and creates
the artist objects

def aniinit ():
117

for s in springs:
119 s.initDraw(ax[0])

121 for n in nodes:
n.initDraw(ax[0])

123

Framework Plot Parameters
125 ax[0]. axis(scaled)

ax[0]. axis(bounds)
127 ax[0]. set_xlabel(Framework)

ax[0]. yaxis.set_visible(False)
129 ax[0]. tick_params(axis = x , # changes apply to the x-axis

which = both , # both major and minor ticks are
affected

131 bottom = off , # ticks along the bottom edge are off
top = off , # ticks along the top edge are off

133 labelbottom = off) # labels along the bottom edge are off

135

Energy Plot parameters
137

ax[1]. axhline(np.average(energy), times[0], times[-1], linestyle = - ,
color = black)

139 # ax[1]. set_xlabel(Framework Energy)
ax[1]. set_xlim ((0, round(times [-1]))) # show times

141 #
e = np.ma.masked_equal(energy , 0.0, copy = False) # for excluding zero

..... only in special cases!
143 # # ax[1]. set_ylim ((e.min(), e.max())) # ^^^

ax[1]. set_ylim ((energy.min(), energy.max()))
145 # ax[1]. ticklabel_format(style = sci , axis = y , scilimits = (0, 0)) #

Force scientific axis tick labels

147

return
149

151 # dpi and bitrate control output quality
fps controls output speed (not the time it takes to write the file ...)

153

python ffmpeg src code - with slight modification
155 # https :// stackoverflow.com/questions /30965355/ speedup -matplotlib -animation -to -

video -file

157 # Replacement for animation.save ...in fact replaces animation completely if given
a wait timer..., a looot better ... before blit stuff , but still more reliable
for saving + output

159 def anisave ():

22

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

161 # Open an ffmpeg process
outfile = Z:\\ users\\ gregory \\ desktop \\ frameani.mp4

163

cmdstring = (ffmpeg , # ffmpeg is
part of windows path , otherwise just give abs path or put in script dir?

165 -y , # overwrite
existing

-r , 5 , # fps
167 -s , %dx%d % fig.canvas.get_width_height (), # size of

image string
-pix_fmt , argb , # format: argb

pixel data
169 -f , rawvideo , -i , - , # tell ffmpeg

to expect raw video from the pipe
-vb , 2.5M , # Bitrate - ie

quality - this param is for rawvid only?, affects output filesize!
171 -vcodec , mpeg4 , # output codec

outfile , # output file
- need proper extension

173)

175 # Execute as an open pipe process
p = subprocess.Popen(cmdstring , stdin = subprocess.PIPE)

177

Draw frames and write data to the pipe
179 for frame in pts:

plotTime(frame) # Call the animation function
181 fig.canvas.draw() # Draw the updated frame

string = fig.canvas.tostring_argb () # Extract the figure image as an ARGB
string - is what ffmpeg was told it would get above

183 p.stdin.write(string) # Write to ffmpeg pipe

185 p.communicate () # Send next input to ffmpeg - essentially tells it the vid
is finished so finish writing and close it.

187 return

189

=== Create The Animation ===========================
191

plt.close(all)
193 fig , ax = plt.subplots(1, 1, num = Awesomist ~~~ Yeaaah ~~~ , figsize = (19.2, 10.8)

, dpi = 100)
if type(ax) != np.ndarray:

195 ax = np.array ([ax])
fig.subplots_adjust(left = 0.1, right = 0.97, bottom = 0.1, top = 0.95, hspace =

0.35)
197 plt.get_current_fig_manager ().window.state(zoomed)

199 pts = np.linspace(0, len(times), int(len(times) / 15), dtype = int) # Subset
points to make animation faster - does not affect accuracy of the motion
relative to the simulation performed.

201 # en , = ax[1]. plot ([0], [0], - , color = #0000aa)

203 aniinit ()
anim = ani.FuncAnimation(fig , plotTime , pts , interval = 1, repeat = True , blit =

True)
205 # anim._stop()

23

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

plt.show()
207

=== Saving Animations ==============================
209 print(Saving Animation ...)

anisave ()
211

=== Plot Specific Times ============================
213

Plots the initial configuration
215 # plotTime (0)

217 # Plots final configuration based on pts
plotTime(pts[-1])

219

==
221

223 print(= * 150, \n)
print("--- Runtime: %s seconds ---" % (time.process_time () - start_time)) #

print program execution time

24

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

"""
2 Numerical Differential Equations

Framework Project Code: Class Structures
4 Instructor: Dr. Andrea Dziubek

Prepared by Gregory Georgiades and David Petrushenko
6 Last Updated: 5/1/2017
"""

8

10 import numpy as np
import scipy.linalg as sci

12 import matplotlib.pyplot as plt

14 # ==
=== Creating the Classes ===========================

16 # ==

18 class Node:
"""

20 A Node is where springs connect and it holds spring mass
"""

22

def __init__(self , x, fixed = False , grav = False):
24 self.x = np.array(x) # Save initial position

self.u = np.array ([0, 0]) # Current Displacement
26 self.um = list([self.u]) # Node remembers the path it has

traveled
self.v = np.array ([0, 0]) # Current Velocity

28 self.vm = list([self.v]) # Node remembers the path it has
traveled

self.fixed = fixed # Fixed or free node
30 self.springs = list() # List of all springs attached to

this node
self.m = 0 # Node mass

32 self.force = list ([[0, 0]])
self.load = np.array ([0, 0]) # Initially no loads on this node

34 # if grav:
self.load = np.array([0, -9.8]) # All nodes get gravity

36

return
38

Add spring to this node
40 def addSpring(self , Spring):

self.springs.append(Spring) # Add this springs to the attached
springs list

42 self.m = self.m + Spring.m / 2 # Add half the spring mass to this
the node s mass

44 return

46 # Add loading (vector force), additive , can do multiple times , though why?
Loads are constant!

48 def addLoad(self , load):
if self.fixed:

50 print(LOADING A FIXED NODE IS POINTLESS (Does nothing in this program
))

return
52 self.load = self.load + np.array(load)

25

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

54 return

56 # Additive initial displacement
Not constant

58 def addDisplacement(self , u):
if self.fixed:

60 print(CANNOT MOVE A FIXED NODE)
return

62 self.u = self.u + np.array(u)

64 return

66 # Add all spring forces and loads occuring at this node
def forceSum(self , sav = True):

68 if self.fixed: # A fixed node has force , but it does
not matter because it will never move so make zero for simplicity

self.force.append ([0, 0])
70 return np.array ([0, 0])

72 netforce = 0

74 for spring in self.springs: # Add all forces from the Springs
attached to this node.

sf = spring.springForce(self)
76 netforce = netforce + sf

78 self.force.append(netforce)# only springs

80 netforce = netforce + self.load # Add inital loading to spring
forces

82 return netforce

84 def updateNode(self , u, v, sav = True):
if sav: # Only saving position if this update

is a final result of a solver
86 if self.fixed:

self.um.append ([0, 0]) # Have to save zero displacement for
fixed nodes otherwise it breaks other code

88 self.vm.append ([0, 0])
else:

90 self.um.append(u)
self.vm.append(v)

92

self.u = u # Update displacement
94 self.v = v # Update velocity

96 return

98

def initDraw(self , ax , color = blue , marker = o , text = 0):
100 if self.fixed:

color = black
102 marker = ^

self.p0 = ax.scatter ([self.x[0]], [self.x[1]], color = #8000 FF20 , marker
= marker , s = 100) # Draw inital position

104 self.p = ax.scatter ([self.x[0]], [self.x[1]], color = color , marker =
marker , s = 100) # Draw mutable point

self.p.set_zorder (100)

26

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

106

return self.p
108

110 def drawNode(self , t):

112 self.p.set_offsets ([[self.x[0] + self.um[t][0]], [self.x[1] + self.um[t
][1]]]) # Update position

self.p.set_zorder (100)
Make sure nodes over springs

114

if text and not self.fixed:
116 # ax.text(self.x[0] + self.um[t][0], self.x[1] + self.um[t][1], self.

vm[t])
ax.text(self.x[0] + self.um[t][0], 0.15, self.um[t])

118

return self.p
120

class Spring:
122 """

A Spring connects two nodes together
124 """

126 nodes = None # Global nodes list - must be passed after nodes are built and
before springs are built!
k = 1 # Global spring constant

128 m = 1 # Global mass value

130 def __init__(self , ids = 0,0 , sm = 0, sk = 0):
self.ids = ids.split(+)

132 self.node1 = self.nodes[int(self.ids [0])] # The first node
self.node2 = self.nodes[int(self.ids [1])] # The second node , note

order of nodes does not matter
134 if sk:

self.k = sk # This springs custom
stiffness

136 if sm:
self.m = sm # This springs custom mass

138 self.node1.addSpring(self) # Tell node1 that this
spring is connected

self.node2.addSpring(self) # Tell node2 that this
spring is connected

140 self.l = sci.norm(self.node1.x - self.node2.x) # Save undeformed length
of this spring

self.fm = list ([[0, 0]])
142 self.lm = list([self.l])

144 return

146

Calculate the force on a node due to this spring
148 # Direction is dependendent on which node calls this method and if the spring

is in tension/compression
def springForce(self , referrer , sav = True):

150 a = 1 if referrer == self.node1 else -1 # Object Comparison to check
which node called this function

152 x = (self.node2.x + self.node2.u) - (self.node1.x + self.node1.u)
li = sci.norm(x)

27

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

154 f = np.dot(a * self.k * (1 - (self.l / li)) , x)

156 if sav:
self.fm.append(f)

158 return f

160

def savelength(self):
162 x = (self.node2.x + self.node2.u) - (self.node1.x + self.node1.u)

li = sci.norm(x)
164 self.lm.append(li)

166

def initDraw(self , ax , text = 0):
168 self.s0 = plt.Line2D ([self.node1.x[0], self.node2.x[0]], [self.node1.x[1],

self.node2.x[1]], color = #FF000020 , lw = 3) # Draw Intial Position
ax.add_line(self.s0)

170

self.s = plt.Line2D ([self.node1.x[0], self.node2.x[0]], [self.node1.x[1],
self.node2.x[1]], color = cyan , lw = 3) # Draw mutable line

172 ax.add_line(self.s)

174 return self.s

176

def drawSpring(self , t):
178 if self.lm[t] < self.l:

color = green
180 elif self.lm[t] > self.l:

color = red
182 else:

color = cyan
184

self.s.set_data ([self.node1.um[t][0] + self.node1.x[0], self.node2.um[t
][0] + self.node2.x[0]], [self.node1.um[t][1] + self.node1.x[1], self.node2.um[
t][1] + self.node2.x[1]])

186 self.s.set_color(color)

188 # if text:
xc = (self.node1.um[t][0] + self.node1.x[0] + self.node2.um[t][0] +

self.node2.x[0]) / 2
190 # # yc = (self.node1.um[t][1] + self.node1.x[1] + self.node2.um[t][1]

+ self.node2.x[1]) / 2
ax.text(xc , 0.1, self.lm[t])

192 # ax.text(xc , 0.03, %s\n%s % (self.fm[t][0], self.fm[t][1]))

194 return self.s

28

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

"""
2 Numerical Differential Equations

Framework Project Code: Numerical Solvers
4 Instructor: Dr. Andrea Dziubek

Prepared by Gregory Georgiades and David Petrushenko
6 Last Updated: 5/1/2017
"""

8

10 import numpy as np
import scipy.linalg as sci

12

==
14 # ==== Solving the systems ===========================

==
16

18 def solve(nodes , springs , dt , n, method = eulex):
methods = { eulex :eulexstep , collatz :collatzstep , eulsym :eulsymstep ,
runge :rungeexstep , stormer :stormer}

20 # Assign appropriate function to stepper func reference
stepper = methods[method]

22

set up time series to simulate under
24 times = np.arange(0, n, dt)

pts = int(n / dt) # rounds down
26 p = pts * 5 / 100 # updated every 5% with current position in simulation

28 energy = np.zeros(pts + 1)

30 print(Starting Simulation)

32 # Main loop containing the numerical solver call and energy calculations
for i in range(len(times)):

34 if i % p == 0:
print("%s%% Simulated ..." % int(i / pts * 100))

36

== Energy ======================================
38 # Have to calculate energy first in order to capture the starting energy

before updating the simulation step.

40 kin , spr = 0, 0

42 for n in nodes:
kin = kin + n.m / 2 * np.power(sci.norm(n.v), 2)

44

for s in springs:
46 spr = spr + s.k / 2 * np.power(sci.norm((s.node1.x + s.node1.u) - (s.

node2.x + s.node2.u)) - s.l, 2)

48 energy[i] = kin + spr

50 # === Data at current time =======================

52 aj = np.array ([n.forceSum () / n.m for n in nodes])
vj = np.array ([n.v for n in nodes])

54 uj = np.array ([n.u for n in nodes])

56 # === Solver Step ================================

29

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

vj1 , uj1 = stepper(aj, vj, uj, dt, nodes)
58

Update nodes with final solver results for this step and have the nodes
save the results to stored data

60 for i, n in enumerate(nodes):
n.updateNode(uj1[i], vj1[i])

62

Save intermediate spring lengths
64 for s in springs:

s.savelength ()
66

print("Simulation Complete ...")
68 return times , energy

70

==
72 # ==== Numerical Solvers =============================

==
74

Euler Explicit
76 def eulexstep(aj , vj , uj , dt , nodes):

78 vj1 = vj + dt * aj
uj1 = uj + dt * vj

80

return vj1 , uj1
82

84 # Euler Symplectic
def eulsymstep(aj , vj , uj , dt , nodes):

86

vj1 = vj + dt * aj
88 uj1 = uj + dt * vj1

90 return vj1 , uj1

92

Explicit Collatz
94 def collatzstep(aj , vj , uj , dt , nodes):

96 vh = vj + dt / 2 * aj
uh = uj + dt / 2 * vj

98

preliminary update
100 for i, n in enumerate(nodes):

n.updateNode(uh[i], vh[i], sav = False)
102 # intermediate acceleration

ah = np.array ([n.forceSum(False) / n.m for n in nodes])
104

vj1 = vj + dt * ah
106 uj1 = uj + dt * vh

108 return vj1 , uj1

110

Explicit Runge -Kutta 4th Order
112 def rungeexstep(aj , vj , uj , dt , nodes):

114 u2h = uj + dt / 2 * vj

30

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

v2h = vj + dt / 2 * aj
116 for i, n in enumerate(nodes):

n.updateNode(u2h[i], v2h[i], sav = False)
118 a2h = np.array([n.forceSum(False) / n.m for n in nodes])

u3h = uj + dt / 2 * v2h
120 v3h = vj + dt / 2 * a2h

for i, n in enumerate(nodes):
122 n.updateNode(u3h[i], v3h[i], sav = False)

a3h = np.array([n.forceSum(False) / n.m for n in nodes])
124 u4h = uj + dt * v3h

v4h = vj + dt * a3h
126 for i, n in enumerate(nodes):

n.updateNode(u4h[i], v4h[i], sav = False)
128 a4h = np.array([n.forceSum(False) / n.m for n in nodes])

130 uj1 = uj + dt / 6 * (vj + 2 * v2h + 2 * v3h + v4h)
vj1 = vj + dt / 6 * (aj + 2 * a2h + 2 * a3h + a4h)

132

return vj1 , uj1
134

136 # Symplectic Stormer -Verlet Method
def stormer(aj , vj , uj , dt , nodes):

138

uj1 = uj + dt * vj + dt ** 2 / 2 * aj
140

for i, n in enumerate(nodes):
142 n.updateNode(uj1[i], vj[i], sav = False)

aj1 = np.array([n.forceSum(False) / n.m for n in nodes])
144

vj1 = vj + dt / 2 * (aj + aj1)
146

return vj1 , uj1

31

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

1 """
Numerical Differential Equations

3 Framework Project Code: Framework Building
Instructor: Dr. Andrea Dziubek

5 Prepared by Gregory Georgiades and David Petrushenko
Last Updated: 5/1/2017

7 """

9

from framework_classes import Node , Spring
11

==
13 # === Buidling the Framework =========================

==
15

17 def buildframework1(k = 1):

19 nodes = [
Node([-5, 0], fixed = True),

21 Node([0, 0]),
Node([5, 0], fixed = True)

23]
Spring.nodes = nodes # sets spring class var - all springs have knowledge of
all nodes

25 Spring.k = k
springs = [

27 Spring(0+1),
Spring(1+2)

29]
Spring.nodes = None # clear it so space saved ??? - needed?

31 nodes [1]. addLoad([-3, -0.01])
nodes [1]. addDisplacement ([0, -0.1])

33

return nodes , springs
35

def buildframework2(k = 1):
37

nodes = [
39 Node([0, 5], fixed = True),

Node([0, -5]),
41 Node([2.5, 0]),

Node([-2.5, 0])
43]

Spring.nodes = nodes
45 Spring.k = k

springs = [
47 Spring(0+2),

Spring(1+2),
49 Spring(0+3),

Spring(1+3),
51 Spring(2+3),

]
53

nodes [1]. addLoad ([0, -1])
55 # nodes [2]. addDisplacement ([0, 1])

57 return nodes , springs

32

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

59

def buildSmallPendulum(k = 1):
61

nodes = [
63 Node([0, 0], fixed = True),

Node([0, 2]),
65 Node([0.1, 3])

]
67 Spring.nodes = nodes

Spring.k = k
69 springs = [

Spring(0+1),
71 Spring(1+2)

]
73 for n in nodes:

n.addLoad ([0, -9.8])
75 # nodes [2]. addDisplacement ([1, 1])

77 return nodes , springs

79

def buildBigPendulum(k = 1):
81

nodes = [
83 Node([0, 0], fixed = True),

Node([0, 1]),
85 Node([0, 2]),

Node([0, 3]),
87 Node([0, 4]),

Node([0, 5]),
89 Node([0, 6]),

Node([0.01, 7])
91]

Spring.nodes = nodes
93 Spring.k = k

springs = [
95 Spring(0+1),

Spring(1+2),
97 Spring(2+3),

Spring(3+4),
99 Spring(4+5),

Spring(5+6),
101 Spring(6+7),

]
103 for n in nodes:

n.addLoad ([0, -9.81])
105 # nodes [2]. addDisplacement ([1, 1])

107 return nodes , springs

109

def buildSmallTruss ():
111

nodes = [
113 Node([0, 0], True),

Node ([0.5, 1]),
115 Node([1, 0]),

Node ([1.5, 1]),
117 Node([2, 0]),

33

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

Node ([2.5, 1]),
119 Node([3, 0], True),

]
121 springs = [

Spring(0+1),
123 Spring(0+2),

Spring(1+2),
125 Spring(1+3),

Spring(2+3),
127 Spring(2+4),

Spring(3+4),
129 Spring(3+5),

Spring(4+5),
131 Spring(4+6),

Spring(5+6),
133]

nodes [3]. addLoad ([0, -0.05])
135 # nodes [3]. addDisplacement ([0, -0.25])

137 return nodes , springs

139 def buildFloorTruss(k = 1):

141 nodes = [
Node([-4, 1], fixed = True),

143 Node([-3, 1]),
Node([-3, 0]),

145 Node([-2, 1]),
Node([-1, 0]),

147 Node([-1, 1]),
Node([0, 1]),

149 Node([1, 0]),
Node([1, 1]),

151 Node([2, 1]),
Node([3, 0]),

153 Node([3, 1]),
Node([4, 1], fixed = True),

155]
Spring.nodes = nodes

157 springs = [
Spring(0+1),

159 Spring(0+2),
Spring(1+2),

161 Spring(1+3),
Spring(2+3),

163 Spring(2+4),
Spring(3+4),

165 Spring(3+5),
Spring(5+4),

167 Spring(5+6),
Spring(4+6),

169 Spring(4+7),
Spring(6+7),

171 Spring(6+8),
Spring(8+7),

173 Spring(8+9),
Spring(7+9),

175 Spring(7+10),
Spring(9+11),

34

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

177 Spring(9+10),
Spring(11+10),

179 Spring(11+12),
Spring(12+10),

181]
Spring.k = k

183 for i in [1, 3, 5, 6, 8, 9, 11]: # top , free nodes only
nodes[i]. addLoad ([0, -0.025])

185 # nodes [2]. addDisplacement ([1, 1])

187 return nodes , springs

189

def buildCrane(k = 1):
191 nodes = [

Node([0, 0], fixed = True),
193 Node([1, 0], fixed = True),

Node([2, 0], fixed = True),
195 Node([3, 0], fixed = True),

Node([1, 1]),
197 Node([2, 1]),

Node([1, 2]),
199 Node([2, 2]),

Node([1, 3]),
201 Node([2, 3]),

Node([1, 4]),
203 Node([2, 4]),

Node([1, 5]),
205 Node([2, 5]),

Node([-1, 6]),
207 Node([0, 6]),

Node([1, 6]),
209 Node([2, 6]),

Node([3, 6]),
211 Node([4, 6]),

Node([5, 6]),
213 Node([6, 6]),

Node([-0.5, 7]),
215 Node([0.5, 7]),

Node([1, 7]),
217 Node([1.5, 7]),

Node([2, 7]),
219 Node([2.5, 7]),

Node([3.5, 7]),
221 Node([4.5, 7]),

Node([5.5, 7]),
223 Node([1, 8.5]) ,

]
225 Spring.nodes = nodes

Spring.k = k
227 springs = [

Spring(0+1),
229 Spring(1+2),

Spring(2+3),
231 Spring(0+4),

Spring(1+4),
233 Spring(1+5),

Spring(2+5),
235 Spring(3+5),

35

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

237 Spring(4+5),
Spring(4+6),

239 Spring(4+7),
Spring(7+5),

241 Spring(6+7),
Spring(6+8),

243 Spring(6+9),
Spring(9+7),

245 Spring(8+9),
Spring(8+10),

247 Spring(8+11),
Spring(9+11),

249 Spring(10+11),
Spring(10+12),

251 Spring(10+13),
Spring(11+13),

253 Spring(12+13),
Spring(12+16),

255 Spring(12+17),
Spring(13+17),

257

Spring(14+15),
259 Spring(15+16),

Spring(16+17),
261 Spring(17+18),

Spring(18+19),
263 Spring(19+20),

Spring(20+21),
265

Spring(22+23),
267 Spring(23+24),

Spring(24+25),
269 Spring(25+26),

Spring(26+27),
271 Spring(27+28),

Spring(28+29),
273 Spring(29+30),

275 Spring(14+22),
Spring(22+15),

277 Spring(15+23),
Spring(23+16),

279 Spring(16+24),
Spring(16+25),

281 Spring(17+25),
Spring(17+26),

283 Spring(17+27),
Spring(18+27),

285 Spring(18+28),
Spring(19+28),

287 Spring(19+29),
Spring(20+29),

289 Spring(20+30),
Spring(21+30),

291

Spring(22+31),
293 Spring(24+31),

Spring(26+31),

36

Numerical Di↵erential Equations Vibration of a Spring-Mass Framework

295 Spring(29+31),
]

297 Spring.nodes = None
nodes [21]. addLoad ([0, 1])

299 nodes [14]. addLoad ([0, 2])

301 return nodes , springs

37

