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Appendix: Calculation of Major- and
Minor-groove Widths

As stated in the main text, we have measured
major- and minor-groove widths as distances
between phosphate groups on the two anti-parallel
strands. There is no universally agreed way of
measuring groove width (e.g. for variants, see
Suzuki & Yagi, 1996; Y. Kim et al., 1993); but our
scheme seems to be adequate for the purposes of
the present study. Our algorithm provides consist-
ent values for the two groove widths at a given
dinucleotide step, provided the step is sufÆciently
far from the ends of the molecule.
Figure A1(a) illustrates the layout of base-pairs,

backbones and phosphate groups for an eight-
base-pair piece of DNA. On strand I, the phosphate
groups are identiÆed as Pi, where i increases in the
50-to-30 direction, while on strand II they are ident-
iÆed as pj, with j increasing in the 30-to-50 direction.
Thus two phosphate groups carry the same index
number as in the corresponding dinucleotide step.
The diagram shows a ``skew ladder'', as if the
base-pairs were viewed from the minor-groove
side in an ``unrolled'' version of the helix.
If distances are measured from a particular phos-

phate Pi on strand I to pi á m on strand II for
�54 m4 0, then it is generally found that there
is a minimum distance at around m à � 3, as
shown in Figure A1(b). Two such distances are
shown by broken lines in Figure A1(a); and this is,
broadly, how we deÆne the width of the minor-
groove, using an ``offset'' of three phosphate
groups. Such distances are clearly not the shortest
lengths as measured geometrically across the
schematic two-dimensional skew-ladder in
Figure A1(a); but no plane diagram, of course, can
adequately represent the actual three-dimensional
geometry of the double helix.
The major-groove width is not quite so straight-

forward to describe, because a plot of the distance
from Pi to pi á m, for 04 m4 5 sometimes shows a
minimum at around m à 4, but sometimes only a
point of inØection there, as shown in Figure A1(b):
cf. Suzuki & Yagi (1996), Figure 1. (In this connec-
tion we should note that a minimum distance,
which may occasionally be found as far away as
m à 7, would correspond to the close approach of
a remote phosphate in strongly bent DNA rather
than a groove width.) In general, we shall deÆne
the major-groove width by using an offset m à 4,
as shown in Figure A1(a) by the chain-dotted line

P2 to p6. Now on the plane diagram that appears
to be a very large distance; but if the ladder were
to be wrapped into something approaching its
true three-dimensional cylindrical form, then the
two points would obviously move much closer
together. The fact that the major-groove width
does not always correspond to a true minimum in
the cross-strand phosphate-to-phosphate distance
is not a signiÆcant disadvantage. Thus we are
interested in ``groove widths'' because we know
that protein moieties such as a-helices and b-sheets
Æt into the major groove, with hydrogen bond and
other links to backbone phosphate groups. Where
phosphate groups on both strands are bound in
this way, there is often an ``offset'' of about 4: for a
collection of examples see, e.g. Calladine & Drew
(1977), chapter 8.
As a rule, then, we shall measure minor-groove

and major-groove widths from Pi to pi � 3 and from
Pi to pi á 4, respectively. There are, however, three
practical complications in using such a scheme, as
follows.
First, if we wish to associate a major-groove

width with a given dinucleotide step k, we can
measure the distance between Pk � 2 and pk á 2. But
in relation to the minor-groove width, the odd-
numbered offset of 3 is awkward. Accordingly, we
deÆne the minor-groove width for a step such as 4
in Figure A1(a) as the mean of the two marked dis-
tances; or in general:

1

2
ÖÖPká1 � pk�2Ü á ÖPká2 � pk�1ÜÜ ÖA1Ü

Second, while offsets m à � 3 and m à á 4 often
locate the shortest distances between particular
cross-chain phosphate groups, the minimum dis-
tances for a smooth curve connecting the measured
points in Figure A1(a) generally lie to one side or
the other of these groups, depending on the degree
of distortion from the classical B form. In our cal-
culations we have taken account of this situation in
the following way. Suppose we wish to compute
the shortest cross-chain length in the vicinity of the
distance P5 to p2 in Figure A1(a). First we imagine
that a smooth curve is drawn through the phos-
phate groups along each strand, as shown schema-
tically in perspective for a short piece of the
molecule in Figure A1(c). We calculate a unit vec-
tor a tangential to this curve at P5 on strand I by
assuming it to be parallel with the vector P6!P4.
Similarly, we calculate the unit vector b at p2 on
the other strand, parallel with p3!p1. Finally, we
calculate a unit vector c, for a hypothetical ``mid-
strand'' curve by taking the mean of directions a
and b: thus c à (a á b)/ja á bj. Now if vector c
happens to be perpendicular to the cross-strand
line P5 � p2, that line is indeed close to the shortest
cross-strand distance. The geometrical device of a
third strand, mid-way between the actual strands I
and II, and with local tangent parallel with c,
enables us to assess whether P5 � p2 is practically
perpendicular to both strands, as it would be if it
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were indeed the shortest distance between them. In
general, however, vector c will lie at angle y to
P5 � p2, where y 6à 90�. In this case, we take the
minimum cross-strand distance to be (P5� p2)sin y;
that is, we take the projection of (P5 � p2) perpen-
dicular to c. In order to complete the calculation of
the minor-groove width corresponding to step 4,
we repeat the above calculation for (P6 � p3), and
then take the average of the two. A similar calcu-
lation is done for major-groove width. In this case,
the mid-strand tangential direction for step 4 is
taken as the mean of the tangents to the two
strands at points P2 and p6. In practice, the value
of siny is not much different from 1 in most of
these calculations; and so the correction to the
simple calculation, equation (A1), and its counter-
part for major-groove width is generally small.
These algorithms have been applied uniformly to
all of our samples.
A third complication in the practical calculation

of major and minor-groove widths is that if they
are to be found for a step such as 4 in Figure A1(a),
then data on phosphate positions are obviously
required for several steps on either side. Examin-
ation of Figure A1(a) shows that, in order for the

calculations described above for step 4 to be com-
pleted, data on phosphate positions are required
for three steps on either side, i.e. for all of the steps
shown in the diagram. (But a total of Æve steps
would be sufÆcient if the siny correction factor
were to be omitted.) This means that we compute
only one pair of groove widths for a DNA octamer,
three for a decamer and Æve for a dodecamer. In
the case of co-crystals, it turns out that our data
sets are such that all bridging-region groove
widths are available; and with very few exceptions
in two of the 434 repressor co-crystals, all con-
tacted-region groove widths may be found.
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