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Appendix: Calculation of Major- and
Minor-groove Widths

As stated in the main text, we have measured
major- and minor-groove widths as distances
between phosphate groups on the two anti-parallel
strands. There is no universally agreed way of
measuring groove width (e.g. for variants, see
Suzuki & Yagi, 1996; Y. Kim et al., 1993); but our
scheme seems to be adequate for the purposes of
the present study. Our algorithm provides consist-
ent values for the two groove widths at a given
dinucleotide step, provided the step is sufficiently
far from the ends of the molecule.

Figure Al(a) illustrates the layout of base-pairs,
backbones and phosphate groups for an eight-
base-pair piece of DNA. On strand I, the phosphate
groups are identified as P; where i increases in the
5'-to-3" direction, while on strand II they are ident-
ified as p;, with j increasing in the 3'-to-5" direction.
Thus two phosphate groups carry the same index
number as in the corresponding dinucleotide step.
The diagram shows a “‘skew ladder”, as if the
base-pairs were viewed from the minor-groove
side in an “unrolled” version of the helix.

If distances are measured from a particular phos-
phate P; on strand I to p;,,, on strand II for
—5 < m < 0, then it is generally found that there
is a minimum distance at around m = -3, as
shown in Figure Al(b). Two such distances are
shown by broken lines in Figure Al(a); and this is,
broadly, how we define the width of the minor-
groove, using an “offset” of three phosphate
groups. Such distances are clearly not the shortest
lengths as measured geometrically across the
schematic ~ two-dimensional  skew-ladder in
Figure Al(a); but no plane diagram, of course, can
adequately represent the actual three-dimensional
geometry of the double helix.

The major-groove width is not quite so straight-
forward to describe, because a plot of the distance
from P; to p; . ,,, for 0 < m < 5 sometimes shows a
minimum at around m =4, but sometimes only a
point of inflection there, as shown in Figure Al(b):
cf. Suzuki & Yagi (1996), Figure 1. (In this connec-
tion we should note that a minimum distance,
which may occasionally be found as far away as
m =7, would correspond to the close approach of
a remote phosphate in strongly bent DNA rather
than a groove width.) In general, we shall define
the major-groove width by using an offset m =4,
as shown in Figure Al(a) by the chain-dotted line

P, to ps. Now on the plane diagram that appears
to be a very large distance; but if the ladder were
to be wrapped into something approaching its
true three-dimensional cylindrical form, then the
two points would obviously move much closer
together. The fact that the major-groove width
does not always correspond to a true minimum in
the cross-strand phosphate-to-phosphate distance
is not a significant disadvantage. Thus we are
interested in “groove widths” because we know
that protein moieties such as o-helices and B-sheets
fit into the major groove, with hydrogen bond and
other links to backbone phosphate groups. Where
phosphate groups on both strands are bound in
this way, there is often an “offset” of about 4: for a
collection of examples see, e.g. Calladine & Drew
(1977), chapter 8.

As a rule, then, we shall measure minor-groove
and major-groove widths from P; to p; _ ; and from
P; to p; , 4 respectively. There are, however, three
practical complications in using such a scheme, as
follows.

First, if we wish to associate a major-groove
width with a given dinucleotide step k, we can
measure the distance between P, _, and p, , ,. But
in relation to the minor-groove width, the odd-
numbered offset of 3 is awkward. Accordingly, we
define the minor-groove width for a step such as 4
in Figure Al(a) as the mean of the two marked dis-
tances; or in general:

1

5 (Prer1 — Pr2) + (Ps2 — Pr1)) (AD)
Second, while offsets m = —3 and m = + 4 often
locate the shortest distances between particular
cross-chain phosphate groups, the minimum dis-
tances for a smooth curve connecting the measured
points in Figure Al(a) generally lie to one side or
the other of these groups, depending on the degree
of distortion from the classical B form. In our cal-
culations we have taken account of this situation in
the following way. Suppose we wish to compute
the shortest cross-chain length in the vicinity of the
distance P to p, in Figure Al(a). First we imagine
that a smooth curve is drawn through the phos-
phate groups along each strand, as shown schema-
tically in perspective for a short piece of the
molecule in Figure Al(c). We calculate a unit vec-
tor a tangential to this curve at P on strand I by
assuming it to be parallel with the vector Pc—P,.
Similarly, we calculate the unit vector b at p, on
the other strand, parallel with p;—p;. Finally, we
calculate a unit vector ¢, for a hypothetical “mid-
strand” curve by taking the mean of directions a
and b: thus c¢=(a+b)/|a+ b|. Now if vector ¢
happens to be perpendicular to the cross-strand
line P5 — p,, that line is indeed close to the shortest
cross-strand distance. The geometrical device of a
third strand, mid-way between the actual strands I
and II, and with local tangent parallel with c,
enables us to assess whether P; — p, is practically
perpendicular to both strands, as it would be if it
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were indeed the shortest distance between them. In
general, however, vector ¢ will lie at angle 6 to
Ps — p,, where 0 #90°. In this case, we take the
minimum cross-strand distance to be (P5 — p,)sin 6;
that is, we take the projection of (Ps — p,) perpen-
dicular to c. In order to complete the calculation of
the minor-groove width corresponding to step 4,
we repeat the above calculation for (Ps — p3), and
then take the average of the two. A similar calcu-
lation is done for major-groove width. In this case,
the mid-strand tangential direction for step 4 is
taken as the mean of the tangents to the two
strands at points P, and pe. In practice, the value
of sinf is not much different from 1 in most of
these calculations; and so the correction to the
simple calculation, equation (A1), and its counter-
part for major-groove width is generally small.
These algorithms have been applied uniformly to
all of our samples.

A third complication in the practical calculation
of major and minor-groove widths is that if they
are to be found for a step such as 4 in Figure Al(a),
then data on phosphate positions are obviously
required for several steps on either side. Examin-
ation of Figure Al(a) shows that, in order for the

calculations described above for step 4 to be com-
pleted, data on phosphate positions are required
for three steps on either side, i.e. for all of the steps
shown in the diagram. (But a total of five steps
would be sufficient if the sin® correction factor
were to be omitted.) This means that we compute
only one pair of groove widths for a DNA octamer,
three for a decamer and five for a dodecamer. In
the case of co-crystals, it turns out that our data
sets are such that all bridging-region groove
widths are available; and with very few exceptions
in two of the 434 repressor co-crystals, all con-
tacted-region groove widths may be found.
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